AP Calculus AB 2023 Summer Work

Welcome to AP Calculus AB!

Please take your time to go through this packet throughout the summer. You are encouraged to work with a friend to complete the packet. These concepts are important to understand prior to the start of Calculus. These concepts are the most important concepts pulled from your Algebra 2 and Pre-Calculus courses, which are crucial to succeed in Calculus. Try to complete this packet without the use of a calculator, unless otherwise stated. I look forward to working with each of you in the Fall! Please reach out if you have any questions.

Enjoy your summer!!

Mrs. Marsh Imarsh@town.hull.ma.us Given $f(x) = x^2 - 2x + 5$, find the following.

1.
$$f(-2) =$$

2.
$$f(x + 2) =$$

3.
$$f(x+h) =$$

4. Use the graph f(x) to answer the following.

$$f(0) =$$

$$f(4) =$$

$$f(-1) = \qquad \qquad f(-2) =$$

$$f(-2) =$$

$$f(2) =$$

$$f(3) =$$

$$f(x) = 2$$
 when $x = ?$

$$f(x) = -3 \text{ when } x = ?$$

Write the equation of the line for the following. Use point-slope form. $y-y_1=m(x-x_1)$

5. slope = 3 and
$$(4, -2)$$

5. slope = 3 and
$$(4, -2)$$
 6. slope = $-\frac{3}{2}$ and $f(-5) = 7$ 7. $f(4) = -8$ and $f(-3) = 12$

7.
$$f(4) = -8$$
 and $f(-3) = 12$

Write the equation of the tangent line in point-slope form. $y - y_1 = m(x - x_1)$

8. The line tangent to f(x) at x = 1

9. The line tangent to f(x) at x = -2

Multiple Choice. Remember slope = $\frac{y_2 - y_1}{x_2 - x_1}$

- 10. Which choice represents the slope of the secant line shown?

- A) $\frac{7-2}{f(7)-f(2)}$ B) $\frac{f(7)-2}{7-f(2)}$ C) $\frac{7-f(2)}{f(7)-2}$ D) $\frac{f(7)-f(2)}{7-2}$

- 11. Which choice represents the slope of the secant line shown?

 - A) $\frac{f(x)-f(x+2)}{x+2-x}$ B) $\frac{f(x+2)-f(x)}{x+2-x}$
 - C) $\frac{f(x+2)-f(x)}{x-(x+2)}$ D) $\frac{x+2-x}{f(x)-f(x+2)}$

Secant line

12. Which choice represents the slope of the secant line shown?

B)
$$\frac{x - (x+h)}{f(x+h) - f(x)}$$

C)
$$\frac{f(x+h)-f(x)}{x+h-x}$$

13. Which of the following statements about the function f(x) is true?

I.
$$f(2) = 0$$

II.
$$(x + 4)$$
 is a factor of $f(x)$

III.
$$f(5) = f(-1)$$

Find the domain and range (express in interval notation). Find all horizontal and vertical asymptotes.

14.

15.

16.

Domain:

Domain:

Domain:

Range:

Range:

Range:

Horizontal Asymptote(s):

Horizontal Asymptote(s):

Horizontal Asymptote(s):

Vertical Asymptotes(s):

Vertical Asymptotes(s):

Vertical Asymptotes(s):

Multiple Choice

- 17. Which of the following functions has a vertical asymptote at x = 4?
 - (A) $\frac{x+5}{x^2-4}$
 - (B) $\frac{x^2-16}{x-4}$
 - (C) $\frac{4x}{x+1}$
 - (D) $\frac{x+6}{x^2-7x+12}$
 - (E) None of the above
- 18. Consider the function: $(x) = \frac{x^2 5x + 6}{x^2 4}$. Which of the following statements is true?
 - I. f(x) has a vertical asymptote of x = 2
 - II. f(x) has a vertical asymptote of x = -2
 - III. f(x) has a horizontal asymptote of y = 1
 - (A) I only
 - (B) II only
 - (C) I and III only
 - (D) II and III only
 - (E) I, II and III
- Rewrite the following using rational exponents. Example: $\frac{1}{\sqrt[3]{x^2}} = x^{-\frac{2}{3}}$

19.
$$\sqrt[5]{x^3} + \sqrt[5]{2x}$$

20.
$$\sqrt{x+1}$$

21.
$$\frac{1}{\sqrt{x+1}}$$

$$22. \ \frac{1}{\sqrt{x}} - \frac{2}{x}$$

$$23. \ \frac{1}{4x^3} + \frac{1}{2} \sqrt[4]{x^3}$$

24.
$$\frac{1}{4\sqrt{x}} - 2\sqrt{x+1}$$

Write each expression in radical form and positive exponents. Example: $x^{-\frac{2}{3}} + x^{-2} = \frac{1}{\sqrt[3]{x^2}} + \frac{1}{x^2}$

25.
$$x^{-\frac{1}{2}} - x^{\frac{3}{2}}$$

$$26. \ \frac{1}{2}x^{-\frac{1}{2}} + x^{-1}$$

27.
$$3x^{-\frac{1}{2}}$$

28.
$$(x+4)^{-\frac{1}{2}}$$

29.
$$x^{-2} + x^{\frac{1}{2}}$$

30.
$$2x^{-2} + \frac{3}{2}x^{-1}$$

Need to know basic trig functions in RADIANS! We <u>never</u> use degrees. You can either use the Unit Circle or Special Triangles to find the following.

31.
$$\sin \frac{\pi}{6}$$

32.
$$\cos \frac{\pi}{4}$$

33.
$$\sin 2\pi$$

34.
$$\tan \pi$$

35.
$$\sec \frac{\pi}{2}$$

36.
$$\cos \frac{\pi}{6}$$

37.
$$\sin \frac{\pi}{3}$$

38.
$$\sin \frac{3\pi}{2}$$

39.
$$\tan \frac{\pi}{4}$$

40.
$$\csc \frac{\pi}{2}$$

41.
$$\sin \pi$$

42.
$$\cos \frac{\pi}{3}$$

43. Find x where
$$0 \le x \le 2\pi$$
,

$$\sin x = \frac{1}{2}$$

44. Find x where
$$0 \le x \le 2\pi$$
,

$$\tan x = 0$$

45. Find x where
$$0 \le x \le 2\pi$$
,

$$\cos x = -1$$

Solve the following equations. Remember $e^0=\mathbf{1}$ and $\ln\mathbf{1}=\mathbf{0}$.

46.
$$e^x + 1 = 2$$

47.
$$3e^x + 5 = 8$$

48.
$$e^{2x} = 1$$

49.
$$\ln x = 0$$

50.
$$3 - \ln x = 3$$

$$51. \ln(3x) = 0$$

52.
$$x^2 - 3x = 0$$

53.
$$e^x + xe^x = 0$$

$$54. \ e^{2x} - e^x = 0$$

Solve the following trig equations where $0 \le x \le 2\pi$.

55.
$$\sin x = \frac{1}{2}$$

56.
$$\cos x = -1$$

$$57. \cos x = \frac{\sqrt{3}}{2}$$

58.
$$2\sin x = -1$$

$$59. \cos x = \frac{\sqrt{2}}{2}$$

$$60. \cos\left(\frac{x}{2}\right) = \frac{\sqrt{3}}{2}$$

61.
$$\tan x = 0$$

$$62. \sin(2x) = 1$$

$$63. \sin\left(\frac{x}{4}\right) = \frac{\sqrt{3}}{2}$$

For each function, determine its domain and range.

Function	<u>Domain</u>	Range
$64. \ y = \sqrt{x-4}$		
65. $y = (x - 3)^2$		
$66. \ y = \ln x$		
$67. y = e^x$		
68. $y = \sqrt{4 - x^2}$		

Simplify.

69. $\frac{\sqrt{x}}{x}$

70. $e^{\ln x}$

71. $e^{1+\ln x}$

72. ln 1

73. $\ln e^7$

74. $\log_3 \frac{1}{3}$

75. $\log_{1/2} 8$

76. $\ln \frac{1}{2}$

(calculator OK)

77. $27^{\frac{2}{3}}$

78. $(5a^{2/3})(4a^{3/2})$

 $79. \ \frac{4xy^{-2}}{12x^{-\frac{1}{3}}y^{-5}}$

80. $\left(4a^{5/3}\right)^{3/2}$

If $f(x) = \{(3,5), (2,4), (1,7)\}, g(x) = \sqrt{x-3}$ $h(x) = \{(3,2), (4,3), (1,6)\}, k(x) = x^2 + 5,$ then determine each of the following.

81. (f+h)(1)

82. (k-g)(5)

83. f(h(3))

84. g(k(7))

85. h(3)

86. g(g(9))

87. $f^{-1}(4)$

88. $k^{-1}(x)$

89. k(g(x))

90. g(f(2))